Astronomy: The Hubble Space Telescope Turns 25

Hubble25 banner

Hubble25

The brilliant tapestry of young stars flaring to life resemble a glittering fireworks display in this 25th anniversary NASA Hubble Space Telescope image to commemorate a quarter century of exploring the solar system and beyond since its launch on April 24, 1990.

The sparkling centerpiece of Hubble’s silver anniversary fireworks is a giant cluster of about 3,000 stars called Westerlund 2, named for Swedish astronomer Bengt Westerlund, who discovered the grouping in the 1960s. The cluster resides in a raucous stellar breeding ground known as Gum 29, located 20,000 light-years away from Earth in the constellation Carina.

To capture this image, Hubble’s Wide Field Camera 3 pierced through the dusty veil shrouding the stellar nursery in near-infrared light, giving astronomers a clear view of the nebula and the dense concentration of stars in the central cluster. The cluster measures between 6 to 13 light-years across.

The giant star cluster is only about 2 million years old and contains some of our galaxy’s hottest, brightest, and most massive stars. Some of its heftiest stars unleash torrents of ultraviolet light and hurricane-force winds of charged particles that etch at the enveloping hydrogen gas cloud.

The nebula reveals a fantasy landscape of pillars, ridges, and valleys. The pillars, composed of dense gas and thought to be incubators for new stars, are a few light-years tall and point to the central star cluster. Other dense regions surround the pillars, including reddish-brown filaments of gas and dust.

This is a big week for the Hubble Space Telescope.

Twenty-five years ago, on April 25, 1990, the Hubble Space Telescope was released into orbit from the Space Shuttle Discovery. Astronomers from around the world are taking stock of the amazing achievements of Hubble over the past 25 years: observations that continually challenge our view of our own Solar System, discoveries of extrasolar planetary systems, a more complete view of star and planet formation, understanding how galaxies evolve from just after the Big Bang to the present day, putting constraints on the nature of the enigmatic dark matter, and even helping to discover that the majority of the mass-energy in the universe is in the form of a mysterious repulsive force known as dark energy. To top it all off, thanks in large part to five servicing missions, Hubble is a more powerful telescope today than at any point in its history.

Astronomers are not only celebrating Hubble’s iconic achievements of the past, they are looking forward to what Hubble can accomplish over the next five years. This anniversary week at the Space Telescope Science Institute (STScI) in Baltimore, Md, a symposium is being held called Hubble 2020: Building on 25 Years of Discovery. STScI is the science operations center of the Hubble Space Telescope, so it is a fitting location for astronomers to gather to discuss the past and the future of Hubble science. For the adventurous out there who would like to test and strengthen their astronomy acumen, watch the astronomy symposium online, where astronomers discuss science results with other astronomers.

Hubble Update.

Part of the conversation happening around the past, present, and future science of Hubble focuses on Hubble’s exploration of the deep universe. As it so happens, April 2015 is also the month where the imaging and processing of the Hubble Frontier Fields data are half-way complete. Of course, astronomers will be pouring over the images for years to come — the science results from the Frontier Fields are just beginning.

Shown in the images below are the first three completely imaged Frontier Fields galaxy clusters (Abell 2744, MACS J0416, MACS J0717) and their respective neighboring parallel fields.

Shown here are the first three completed Frontier Fields galaxy clusters and their associated parallel fields. Labeled, from the top, are galaxy cluster Abell 2744, the neighboring Abell 2744 parallel field, galaxy cluster MACS J0416, the neighboring MACS J0416 parallel field, galaxy cluster MACS J0717, and the neighboring MACS J0717 parallel field. The MACS J0717 galaxy cluster image and its associated parallel field are still being processed, so we expect new versions of these images shortly. Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

Shown here are the first three completed Frontier Fields galaxy clusters and their associated parallel fields. Labeled, from the top, are galaxy cluster Abell 2744, the neighboring Abell 2744 parallel field, galaxy cluster MACS J0416, the neighboring MACS J0416 parallel field, galaxy cluster MACS J0717, and the neighboring MACS J0717 parallel field. The MACS J0717 galaxy cluster image and its associated parallel field are still being processed, so we expect new versions of these images shortly.
Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

Astronomers are already looking forward to the future of deep-field science. While much of the discussion this week is about Hubble, astronomers generally acknowledge that to truly build off of Hubble’s discoveries, we need the next-generation Great Observatory, the James Webb Space Telescope (JWST). JWST is scheduled to launch in the fall of 2018.

It goes without saying that the participants of the Hubble 2020 symposium are incredibly excited at the prospect of these two behemoths of science — these machines of discovery —  exploring the universe at the same time.

On the Web: Events celebrating Hubble’s 25th anniversary

Crash

Advertisements